From 1 - 3 / 3
  • Categories  

    This updated layer of The Gridded Livestock of the World (GLW)database provided modelled livestock densities of the world, adjusted to match official (FAOSTAT)national estimates for the reference year 2005, at a spatial resolution of 3 minutes of arc (about 565 km at the equator).Recent methodological improvements have significantly enhanced these distributions: more up-to date and detailed sub-national livestock statistics have been collected; a new, higher resolution set of predictor variables is used; and the analyticalprocedure has been revised and extended to include a more systematic assessment of model accuracy and therepresentation of uncertainties associated with the predictions.<br><br>For further details on mapping methods see: Robinson, T.P., Wint, G.R.W., Conchedda, G., Van Boeckel, T.P., Ercoli, V., Palamara, E., Cinardi, G., D’Aietti, L., Hay, S.I., Gilbert, M., 2014. Mapping the Global Distribution of Livestock. PLoS ONE 9, e96084. <a href=\"https://doi.org/10.1371/journal.pone.0096084\"target=_blank>https://doi.org/10.1371/journal.pone.0096084</a><br/><br>These digital layers are made publically available via the Livestock Geo-Wiki (<a href=\"http://www.livestock.geo-wiki.org\"target=_blank>livestock.geo-wiki.org</a><br/>

  • Categories  

    This dataset provides estimate of the potential increase in soil organic carbon within the top 30 cm of soil in croplands after 20 years, following implementation of better land managment practices under a high sequestration scenario. The per pixel values here take in to consideration the percent of each pixel which is classified as cropland (from the GLC-Share/GLC-02 dataset), and values have been converted to total tonnes of carbon (x 100) per pixel.<br/><br>See: <a href="https://doi.org/10.1038/s41598-017-15794-8">Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7, 15554</a>.<br/>For descriptions of sequrestion scenarions see: <a href="https://doi.org/10.1016/j.jenvman.2014.05.017">Sommer, R., Bossio, D., 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144, 83–87</a>.<br/>

  • Categories  

    This dataset provides estimate of the potential increase in soil organic carbon within the top 30 cm of soil in croplands after 20 years, following implementation of better land managment practices under a medium sequestration scenario. The per pixel values here take in to consideration the percent of each pixel which is classified as cropland (from the GLC-Share/GLC-02 dataset), and values have been converted to total tonnes of carbon (x 100) per pixel.<br/><br>See: <a href="https://doi.org/10.1038/s41598-017-15794-8">Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7, 15554</a>.<br/>For descriptions of sequrestion scenarions see: <a href="https://doi.org/10.1016/j.jenvman.2014.05.017">Sommer, R., Bossio, D., 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144, 83–87</a>.<br/>